
Multi View Approach to 3D Generative Models

Bryon Kucharski
University of Massachusetts Amherst

140 Governors Drive
Amherst, MA 01003-9264
bkucharski@umass.edu

Abstract

Generative models are a commonly studied topic in ar-
tifical intelligence that aim to understand the underlying
structure of data by estimating a probability distribution
of a dataset. Variational Autoencoders (VAE) and General
Adverserial Networks (GAN) have become two of the most
popular generative models. Promising results have been
shown when combining VAEs and GANs by sharing the de-
coder network of a VAE and generator network of the GAN.
Recent work has extended these architectures into the 3D
realm. The 3D-GAN and 3D-VAE-GAN architectures are
explored in this project and a new architecture is introduced
to incorporate multiple views with the 3D-VAE-GAN for 3D
object generation.

1. Introduction
The goal of many artificial intelligence researchers is to

achieve human level intelligence in machines. Many algo-
rithms are designed to learn and understand a given dataset
to perform tasks such as classification. Humans have the
ability to create things such as music, art, stories, etc. Thus,
in order for machines to achieve human level intelligence,
they must be able to create as well as understand. Gener-
ative models are a step towards teaching machines how to
create. They aim to estimate the probability distribution of
a dataset and novel data points could be sampled from this
distribution.

Currently three main approach to generative models ex-
ist in machine learning: General Adverserial Networks
(GANs) [2], Variational Autoencoeders (VAEs) [3], and
Autoregressive models (such as PixelRNN [12]). GAN ar-
chitectures use a two player adversial approach, where one
model tries to generate realistic looking data and the other
model determines which inputs are real and which are gen-
erated. A VAE encodes then decodes the input data and
learns a latent distribution of the dataset. PixelRNN mod-
els a conditional distribution of each pixel given all previous

pixels. [6] introduced a VAE-GAN architecture which com-
bines the decoder of the VAE and the generator of the GAN
to learn a generative model.

2. Related Work

While much progress has been made in generative ap-
proaches in 2D domains, there are also extensions of these
models into the 3D domain. The work in [1] proposed a
voxel based VAE and [11] proposed a mesh based VAE.
[13] introduced the 3D General Adverserial network (3D-
GAN) and is the main paper corresponding to this project.
The main contribution of this work was the high-quality
novel and realistic objects generated by leveraging advances
in volumetric convolutional networks [14] and GANs. In
addition to 3D-GAN, they also introduced a novel single
image to 3D object algorithm named 3D-VAE-GAN. This
algorithm combines the work from VAE-GAN with the 3D-
GAN, where the decoder of the auto encoder network is
shared with the generator of the GAN.

This project contains two main goals. First, an exten-
sion of the 3D-VAE-GAN architecture is explored to in-
corporate multiple views. Different methods of combining
the latent representations of each view is explored. Sec-
ondly, an unofficial PyTorch implementation of the 3D-
GAN work is found on GitHub [9], which is extended to
contain 3D-VAE-GAN and the multi view 3D-VAE-GAN
(MV-3D-VAE-GAN).

The extension of this project to a multi view 3D-VAE-
GAN is based on the idea from the multi view convolution
nerual networks [10]. In this work, the authors proposed
a novel method for classifying 3D objects using multiple
CNNs that operate independently of each other. To make
a prediction on the class, each CNN is pooled together and
passed through another CNN. In this project, each view is
encoded into the latent vector, pooled together, and passed
though the generator network to produce a 3D object.

1



Figure 1. Architecture of GAN. Given a random latent vector zt,
the generator network G produces a 3D object xt. The discrimi-
nator network D classifies which object is real and which is fake.

3. Method
3.1. Architectures

GANs can be described as a two player game. One
player is a generator model which produces fake data points
from a latent vector. The second player is a discriminator
which is given both the generated data point and a real data
point from the dataset and classifies which is real and which
is generated. The goal is to have the generator successfully
trick the discriminator into classifying the generated data
point as real. This would mean the generator is producing
data that is realistic. Given the data point xi and a random
vector zt, the loss of the discriminator tries to maximize

LD = logD(xi) + log(1−D(G(zt)))

and is two-fold so that logD(xi) ∈ (0, 1) is close to 1, and
log(1−D(G(zt))) ∈ (0, 1) is close to 0. The generator loss
function tries to minimize

LG = 1−D(G(zt))

so that D(G(Zt)) is close to 1. Then, the total loss during
training is combined as

L = LD + LG

3D-GAN architecture in Figure 1 follows the the original
GAN architecture, but the output xi is a 3D object instead of
an image. It consists of a generator network that repeatedly
upsamples with deconvolutional layers, starting from a one
dimensional zt vector to a 3D object.

The 3D-VAE-GAN proposes an addition to the 3D-GAN
architecture. In this variation, the decoder of the VAE is
shared with the generator of the GAN seen in Figure 2.
Given an image yi and a corresponding 3D object xi, the
VAE learns a distribution with zmu and zσ . This distribu-
tion is sampled to receive ze. Then, the generator of the
GAN produces a 3D object by upsampling ze. During train-
ing, reconstructed loss is calculated as the distance between
the generated 3D object and input 3D object

Lrecon = ‖G(ze)− xi‖

Figure 2. Architecture of 3D-VAE-GAN. The VAE is given a 2D
image yi and is encoded by E into a mean zµ and variance zσ . A
latent vector ze is sampled from this distribution and then passed
through the generator G to get a 3D object xe. A random latent
vector zt is passed through G to get the 3D object xt. The discrim-
inator D classifies if the real 3D object xi or xt is real or fake. The
reconstruction loss is calculated between xe and xi.

During training, the KL Divergence [5] is calculated to en-
sure zmu and zσ are close to a normal distribution.

LKL = −1

2
∗
∑

(1 + zvar − z2µ − ezvar )

The loss for the generator is updated to include the recon-
struction loss

LG = 1−D(G(zt)) + Lrecon

The total loss is the addition of all the separate loss func-
tions

L = LD + LG + LKL

The MV-3D-VAE-GAN is an extension of the 3D-VAE-
GAN architecture. In this architecture, seen in Figure 3, the
goal is to learn a better latent vector of the 2D image by
merging multiple 2D images into a single representation.
Each view is a 2D image yi ∈ Y of the same 3D object xi
and is encoded into a latent vector. Each view learns it’s
own distribution zµyi

and zσyi . Each is sampled to receive
zeyi and then pooled together to receive a final representa-
tion of ze. Then, a 3D object is generated and the recon-
struction loss is calculated the same way as 3D-VAE-GAN.
The only difference during training is the KL divergence is
averaged across all views to ensure each zµyi

and zσyi
is

close to a normal distribution

LMVKL =
1

N
(

N∑
i=0

−1

2
∗
∑

(1 + z
yi
− z2µyi

− ezyi )

where N is the number of views. The total loss is updated
to include the average KL divergence.

L = LD + LG + LMVKL

2



Figure 3. Architecture of MV-3D-VAE-GAN. The VAE is given
multiple 2D images Y . Each image y ∈ Y is encoded by E into
their respective mean zµy and variance zσy . A latent vector zey
is sampled from each distribution and then all combined using ei-
ther max pooling or average pooling to receive a single dimension
encoding ze. Then, ze is passed through the generator G to get a
3D object xe. A random latent vector zt is passed through G to
get the 3D object xt. The discriminator D classifies if the real 3D
object xi or xt is real or fake. The reconstruction loss is calculated
between xe and xi..

The generator network for each model included five trans-
pose 3D layers with 3D batch normalization and a ReLU
activation functions to map a single dimension vector into a
32x32x32 voxelized 3D object. The discriminator network
for each model includes five 3D convolutional layers with
3D batch normalization, leaky ReLU activation functions
with a sigmoid layer at the end to map a 3D object into a
single scalar value representing the probability of being a
generated object. The image encoding networks for the 3D-
VAE-GAN and MV-3D-VAE-GAN models are a five layer
2D convolution network with 2D batch normalization and
ReLU activation functions to map a the 2D image into a sin-
gle latent dimension. All models where optimized using the
ADAM optimizer with a learning rate of 0.0025, 0.0001,
0.001 for the generator, image encoder, and discriminator
network.

3.2. Data and Preprocessing

The 3D-GAN architecture requires only a 3D object
while the 3D-VAE-GAN architecture requires a 3D object
and a corresponding 2D image of the object. The MV-3D-
VAE-GAN architecture requires a 3D object and multiple
2D images of the 3D object at different views. The ’model-
net40v1png’ dataset from the MVCNN paper [10] provides
all the necessary images and 3D objects for all architectures.
For this project, the models are trained using only the chair
class from the ModelNet dataset.

The 3D objects were provided in .OFF file format and re-
quire a voxelization step as preprocessing. To achieve this,
the binvox software developed by Patrick Min [8] was used
to convert the .OFF files into .binvox files. Then, during
the loading of the dataset in PyTorch, the ’binvox-rw-py’

[7] script by Daniel Maturana is used to convert the binvox
files into 3D arrays.

4. Experiments
In general, different GAN models can be compared as

how well its distribution matches the distribution of the
data. This can be achieved by a number of ways including
visual comparison, reconstruction errors, or geometric met-
rics. GAN models typically do not have a reconstruction
error because of the lack of an autoencoding architecture.
However, since this work deals largely with the addition of
VAEs to the GAN architecture, this provides an evaluation
metric to compare models.

Two experiments were performed to answer two ques-
tions. The first experiment aims to answer the question if
incorporating the autoencoding architectures help learn bet-
ter parameters for generating novel and realistic looking 3D
objects from random latent vectors. An empirical evalua-
tion of Figure 4 reveals a few interesting aspects. During
training, each algorithm was given a random latent vector
zt at epoch 250, 1000, and 2000, and the generated 3D ob-
jects are shown in the figure. While it may be difficult to
concretely say which algorithm has the best generated 3D
object, it is definite which models had the worst. In the
early epochs and later epochs, the 3D-GAN algorithm was
not able to produce an object that resembles a chair, mean-
ing it took longer to train and at some point the generator
diverged. MV-3D-VAE-GAN with max pooling suffered
from this problem as well in the later epochs of training.
The 3D-VAE-GAN on epoch 2000 and the MV-3D-VAE-
GAN with mean pooling on epoch 250 had the most realis-
tic and novel looking chairs. This may imply that MV-3D-
VAE-GAN with mean pooling can learn in less epochs than
all other algorithms.

One important distinction between the algorithms is the
computation time to train. There is a slight computation
increase between the 3D-GAN and the 3D-VA-GAN due
to the autoencoding step, but there is a massive increase in
computation time between the 3D-VAE-GAN and both MV-
3D-VAE-GAN algorithms. This is due to the fact that each
view is encoded separately and not vectorized. This leaves
an direction of future work for the multi view algorithms.
Thus, if computation time is a factor of interest, the 3D-
VAE-GAN model would be the choice of algorithm for this
experiment.

The second experiment aims to answer the question of
which autoencoding algorithm produces the best 2D image
to 3D reconstruction. The 3D-GAN algorithm is not in-
cluded in this experiment due to the lack of 2D to 3D capa-
bilities. To answer this question, each autoencoding algo-
rithm is trained for 1000 epochs and ran on a test set of 3D
objects and corresponding images, and the reconstruction
error calculated. Based on Table 1, the MV-3D-VAE-GAN

3



Figure 4. Examples of 3D objects generated by each algorithm from a random latent zt vector at different epochs in training.

with max pooling algorithm had the lowest reconstruction
error.

The authors of [13] used the the IKEA dataset which
contains images of the 3D IKEA objects. The images in this
dataset are captured in the wild and have heavy occlusion,
and they where still able to provide quality results on the 2D
image to 3D object task using the 3D-VAE-GAN algorithm.
In the dataset I used, all of the images are not in the wild and
have no occlusions. This may contribute to the success of
the 3D-VAE-GAN on my dataset. A single image not in the
wild with no occlusion may be enough to learn the param-
eters. I hypothesize that the MV-3D-VAE-GAN algorithms
would excel on datasets in the wild with occlusion because
more information will be extracts. Although there may be
an increase in performance, it would be unlikely to achieve
multiple views of the same object if they are in the wild.

Algorithm Average Reconstruction Loss
3D-VAE-GAN 822

MV-3D-VAE-GAN (Mean) 861
MV-3D-VAE-GAN (Max) 739

Table 1. Average Reconstruction Error on Test Set

5. Conclusion
3D-GANs are a architecture introduced by [13] and com-

bine previous works from 2D GANs and volumetric con-
volutional networks. 3D-VAE-GANs were also introduced
and provide a way to perform single 2D image to 3D object
generation. This project extends the 3D-VAE-GAN by in-
corporating the idea of view pooling from [10] to introduce
a multi view 3DVAEGAN. Using the ’modelnet40v1png’
dataset from the MVCNN project, the 3D-GAN,3D-VAE-
GAN, and MV-3D-VAE-GAN with both average pooling
and max pooling are compared on two experiments. 3D-

VAE-GAN and MV-3D-VAE-GAN with average pooling
where empirically the best model on the first experiment to
test the learned parameters of the generator network. MV-
3D-VAE-GAN with max pooling performed best on the re-
construction of test data points. In addition the GitHub
repository was updated to include a PyTorch implemen-
tation of 3D-VAE-GAN and MV-3D-VAE-GAN and are
available at [4]. Future work on this project would include a
vectorized version of the multi view code and a new dataset
of multi view objects in the wild.

References
[1] Andrew Brock, Theodore Lim, James M Ritchie, and

Nick Weston. Generative and discriminative voxel mod-
eling with convolutional neural networks. arXiv preprint
arXiv:1608.04236, 2016.

[2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014.

[3] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[4] Bryon Kucharski. Multiview-3d-vae-gan.
https://github.com/bryonkucharski/
Multiview-3D-VAE-GAN, 2019.

[5] Solomon Kullback. Information Theory and Statistics. Wi-
ley, New York, 1959.

[6] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo
Larochelle, and Ole Winther. Autoencoding beyond pix-
els using a learned similarity metric. arXiv preprint
arXiv:1512.09300, 2015.

[7] Daniel Maturana. binvox-rw-py. https://github.
com/dimatura/binvox-rw-py, 2016.

[8] Fakir S. Nooruddin and Greg Turk. Simplification and
repair of polygonal models using volumetric techniques.

4

https://github.com/bryonkucharski/Multiview-3D-VAE-GAN
https://github.com/bryonkucharski/Multiview-3D-VAE-GAN
https://github.com/dimatura/binvox-rw-py
https://github.com/dimatura/binvox-rw-py


IEEE Transactions on Visualization and Computer Graph-
ics, 9(2):191–205, 2003.

[9] rimchang. 3dgan-pytorch. https://github.com/
rimchang/3DGAN-Pytorch, 2017.

[10] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and
Erik G. Learned-Miller. Multi-view convolutional neural
networks for 3d shape recognition. In Proc. ICCV, 2015.

[11] Nobuyuki Umetani. Exploring generative 3d shapes using
autoencoder networks. In SIGGRAPH Asia 2017 Technical
Briefs, page 24. ACM, 2017.

[12] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt,
Oriol Vinyals, Alex Graves, et al. Conditional image gen-
eration with pixelcnn decoders. In Advances in neural infor-
mation processing systems, pages 4790–4798, 2016.

[13] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Free-
man, and Joshua B Tenenbaum. Learning a probabilistic
latent space of object shapes via 3d generative-adversarial
modeling. In Advances in Neural Information Processing
Systems, pages 82–90, 2016.

[14] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015.

5

https://github.com/rimchang/3DGAN-Pytorch
https://github.com/rimchang/3DGAN-Pytorch

