
Learning to Drive with Reinforcement
Learning and Variational Autoencoders

Bryon Kucharski
University of Massachusetts Amherst

bkucharski@umass.edu

Abstract

The use of deep reinforcement learning (RL) for follow-
ing the center of a lane has been studied for this project.
Lane following with RL is a push towards general artificial
intelligence (AI) which eliminates the use for hand crafted
rules, features, and sensors. A project called Duckietown
has created the Artificial Intelligence Driving Olympics,
which aims to promote AI education and embodied AI
tasks. The AIDO team has released an open-sourced sim-
ulator which was used as an environment for this study.
This approach uses the Deep Deterministic Policy Gradi-
ent (DDPG) with raw images as input to learn a policy for
driving in the middle of a lane for two experiments. A com-
parison was also done with using an encoded version of the
state as input using a Variational Autoencoder (VAE) on
one experiment. A variety of reward functions were tested
to achieve the desired behavior of the agent. The agent was
able to learn how to drive in a straight line, but was un-
able to learn how to drive on curves. It was shown that
the VAE did not perform better than the raw image variant
for driving in the straight line for these experiments. Fur-
ther exploration of reward functions should be considered
for optimal results and other improvements are suggested
in the concluding statements.

1. Introduction
Autonomous vehicles are one of the most researched top-

ics today and have shown a large amount of progress due to
the recent advances in computer vision and deep learning.
Typically, these systems use a variety of sensors to perceive
their surroundings, such as radar, computer vision, Lidar,
sonar, GPS, odometry and inertial measurement units.

One argument for reinforcement learning (RL) is that it
eliminates a lot of the complexity of current systems, and
relies on a more natural learning experience. Consider a

child learning how to ride a bike. There is not a list of
hand-crafted rules for him or her to follow and no sensors
attached to the bicycle. All he or she is given is a safe envi-
ronment to test different ways to ride the bike. After enough
trial and error, he or she is able to successfully stay bal-
anced. This is the approach that RL applies to self-driving
cars. Regardless whether one agrees with this approach
or not, it is worth studying to explore new approaches to
progress autonomous vehicle research.

A major factor in any learning algorithm is the
curse of dimensionality made famous by Richard Bellman.
While exploring different topics in dynamic programming,
Richard explains that as the number of dimensions grows,
there is a significant increase in the amount of data and com-
putation needed to explore the complete state-action space.
This ”curse” is still relevant in many aspects of learning to-
day. The field of reinforcement learning has experienced
this curse as well, as one of the most common algorithms,
Q-Learning [10] works particularly well in smaller dimen-
sional state spaces. Methods have been developed called
function approximation to address these issues, but not fully
eliminate the issue. Even more relevant today, many deep
reinforcement algorithms are learning off of pixels directly
instead of hand crafted features. Thus, research has led
to algorithms to handle continuous state (DQN) [5] and
continuous actions (DDPG) [4] spaces. While these han-
dle these continuous spaces well in some situations, there
are still many situations which still suffer from the curse
of dimensionality. Maybe it is possible to use another di-
mensionality reduction method, a Variational Autoencoder
(VAE), to compress a state space as input to a continuous
algorithm. This project aims to study the use of VAEs and
it’s importance in training a deep reinforcement learning al-
gorithm.

1

2. Background/Related Work
2.1. Reinforcement Learning

A reinforcement learning agent learns from exploring the
environment and has a goal to find a policy π that maximize
the reward signal given from the environment. The environ-
ment and agent are modeled mathematically using a Markov
Decision Process (MDP). An MDP consists of

• State set S: - all possible states in environment

• Action set A: - all possible actions the agent may
choose

• Reward function R: - reward for entering state s
′

by
taking action a in state s

• Initial state distribution: d0 - probability of starting in
each state

• Discount factor γ - how far into the future to consider
rewards

• (Optional) Transition Matrix P : describes the proba-
bility of transitioning between states item

The state-value function V π(s) is scalar measure of how
good it is for the agent to be in state s when using policy
π. The action-value function Qπ(s, a) is a scalar measure
of how good it is for the agent to take action a in state s
and follows the policy π after. Many times in RL, the state-
value function and/or action-value functions are not directly
known for every state or state-action pair. In this usual sit-
uation, a function approximator is used to estimate these
values. Linear function approximators may be used such
as the Fourier Basis and Polynomial Basis [3], but neural
networks may also be used as non-linear function approxi-
mators. This is known as deep reinforcement learning.

Another important aspect of RL used in this project is
the Temporal Different (TD) error, which is most commonly
defined at time t as

δ = target− prediction

δ = (Rt + γV (St+1))− V (St)

The TD error is a measure of what actually happened
Rt+γV (St+1) between what the agent predicted happened
V (St). A positive TD error means there was a better out-
come than expected, and a negative TD error means there
was a worse outcome than expected. The TD error is es-
sential in training the networks for the Deep Deterministic
Policy Gradient (DDPG) algorithm.

2.1.1 Deep Deterministic Policy Gradient

DDPG is a deep RL algorithm introduced by DeepMind [4]
used to solve continuous state and continuous action based
MDPs. It is an actor-critic based algorithm, where an actor

network uses the current policy π is to predict the continu-
ous actions given an input state. The critic network uses the
output of the actor network to estimate the Qπ(s, a) func-
tion.

The training of the DDPG algorithm is done online. At
every iteration, the agent receives state s, takes action a,
receives reward r, and ends up in a new state s′, These ex-
periences are stored as a tuple (s, a, r, s

′
) (also known at

experience replay). To update the weights of each network,
these experiences are randomly sampled to create a batch
of experiences. One of the key aspects for this algorithm to
work is the idea of using target networks to estimate the tar-
get values in the TD error. Thus, there is actually four net-
works trained during training: criticQ(St, At) , critic target
Q

′
(St, At) , actor u(St), and actor target u

′
(St). During

the training process, a batch of (s, a, r, s
′
) are given and the

targets are calculated with

target = r + γQ
′
(s, u

′
(s))

The critic network is then updated by minimizing the mean
squared error between the critic network and the target net-
work

L = MSE(target,Q(s, a))

The policy network is then updated by taking the policy gra-
dient [8] (PyTorch pseudocode)

OJ = −Q(s, u(s)).mean().backwards()

Both the weights of the targets θQ
′

and θu
′

are updated to
match the weights of the non-target networks θQ and θu

θQ
′

= τθQ + (1− τ)θQ
′

θu
′

= τθu + (1− τ)θu
′

where τ is a hyperparameter
Any reinforcement learning agent is required to explore

the environment to learn. If part of the state-action tu-
ples are not explored, the agent will not have complete
knowledge of the environment. DDPG uses an exploration
method called Ornstein Uhlenbeck process [9]. The idea
behind this process for RL is to add stochasticity to every
action being selected.

2.2. Variational Autoencoders

A vanilla autoencoder is a relatively simple idea where
one can compress input data into a smaller dimensional z
vector using a neural network without losing much infor-
mation about the original image. To train the network, one
could decode the z vector back into the original data us-
ing a neural network, and compare the difference between
the original data and the decoded data as a loss function.
This is called the reconstruction loss. A variational autoen-
coder is an extension to the vanilla autoencoders. Instead

2

of encoding into a single z vector, a mapping is created to
a distribution where one vector represents the mean of the
distribution and one vector represents the standard devia-
tions. To get the z vector, a sample is taken using these two
vectors as

z ∼ q(µ, σ)

The loss function is modified to have the same reconstruc-
tion loss as the vanilla architecture. A second term is added
to the loss function called the KL divergence which is used
to ensure the distribution is relatively close to a normal dis-
tribution. There is one more detail called reparameterization
which is needed because it is not possible to differentiate a
sampled distribution. Instead of sampling from the distribu-
tion directly, the z vector is constructed using the formula

z = µ+ σ ∗ ε

where µ and σ are learned parameters and ε is a normal
distribution. Using this trick, the function is differentiable
but still include the desired stochastic node.

2.3. Duckietown

Duckietown is a project that started at MIT [6]. It began
as a course to teach different aspects of self driving cars. It
consists of a town made of rubber mats and Raspberry Pi
based robots called DuckieBots. The DuckieBots traverse
the town without hitting other DuckieBots or the rubbery-
duckie inhabits of the town. It has been a rapidly grow-
ing project, which now focuses on teaching embodied AI.
The Duckie Foundation has organized the first AI Driving
Olympics (AIDO), which took place at NeuralIPS in De-
cember 2018. I missed the deadline to submit for the com-
petition, but the second round of the AIDO are taking place
in 2019 at ICRA which I may be interested in submitting
too. This competition has four main tracks

• Lane Following

• Lane following with other vehicles

• Navigation with Dynamic Obstacles

• Autonomous Mobility-on-Demand

I chose the Lane Following task for my project. There is
one simple goal for this challenge: stay in the middle of the
lane at all times.

The AIDO team released an open source simulator for
the competition. The simulator is created with Python and
PyGlet. It is Open-AI Gym compatible which makes it easy
to use. There are YAML files which can describe different
map configurations as well was wrapper classes for more
customization such as resizing observations, creating a dis-
crete action set, etc. Figure 1 shows example screenshots of
the simulator.

Figure 1: Examples of Gym-Duckietown simulator

2.4. Related Work

The idea for combining DDPG with VAEs with was ex-
posed to me from a paper by a United Kingdom based self-
driving car company named Wayve [2]. In Wayve’s exper-
iment, the authors detailed an experiment to drive 250km
using DDPG with convoluted images using CNNs versus
DDPG with encoded images using a VAE. In their exper-
iment, they showed VAE vastly decreased the amount of
training episodes to reach the 250km goal.

The Gym-Duckietown [1] team provides a baseline im-
plementation of reinforcement learning algorithms includ-
ing ACKTR, Proximal Policy Optimization (PPO), and
Asynchronous Actor Critic (a2c). The AIDO team also re-
leased a baseline implementation of DDPG which does not
work of the box.

3. Approach
The main idea of this project is rather simple - determine

if I could improve an agent’s policy or an agents training
time by encoding an the state image into a smaller dimen-
sional vector, and use that as the new state representation.
The MDP was constructed as

• S (continuous) - all possible images

• A (continuous) - One variable between [0,1] which
controls how much velocity to apply to the DuckieBot.
A second variable in the range [-1,1] which controls
the steering angle. -1 is all the way left and +1 if all
the way right.

• R: Varies in each experiment

• d0: Experiment 1 - Agent always starts in the middle
of the lane at the beginning of a straight track.
Experiment 2 - agent is randomly placed on the map in
the middle of the right lane.

• γ: 0.99

• P : Not used (Model Free)

I have used fully connected layers for all networks in this
project. The hyperparameters and network size for DDPG
follow the original paper [4]. For the VAE, a fully connected
network with one layer and 400 units was used for both the
encoder and decoder. The input images where size 3x64x64

3

(a) Epoch 1

(b) Epoch 25

Figure 2: Example Reconstructiton of VAE from start of
training to end of training

and encoded into a 1x100 vector which drastically reduces
the dimensionality of the input data. A dataset was col-
lected to train the VAE by manually controlling the Duck-
ieBot around the environment and collecting images at ev-
ery update. The VAE was trained offline from the DDPG
training on a dataset of 10,000 training images and 2,000
test images which are included in the supplementary ma-
terial. When DDPG training began, the pre-trained VAE
model was used to encode the input image. Algorithms 1
and 2 show the main training loop of the DDPG algorithms.
The .train() method is the process described in the back-
ground section of this report. As Algorithm 2 shows, the
only different in the training loop was to add the extra en-
coding step of the input image. Figure 2 shows comparisons
of the input image and reconstructed image.

Algorithm 1 Training Loop of Deep Deterministic Policy
Gradient with Raw Images

1: procedure DDPGRAW(ENV,DDPG)
2: s← env.reset().flatten()
3: steps← 0
4: while steps < 20000 do
5: a← ddpg.selectAction(s)
6: r, s

′
done← env.step(a)

7: s
′ ←flatten(s

′
)

8: ddpg.remember(s, a, r, s
′

)
9: ddpg.train()

10: steps← steps + 1
11: if done then
12: s← env.reset().flatten()
13: else
14: s← s

′

Algorithm 2 Training Loop of Deep Deterministic Policy
Gradient with VAE

1: procedure DDPGVAE(ENV,DDPG, VAE)
2: s← env.reset().flatten()
3: s← vae.encode(s)
4: steps← 0
5: while steps < 20000 do
6: a← ddpg.selectAction(s)
7: r, s

′
, done← env.step(a)

8: s
′ ←flatten(s

′
)

9: s
′ ← vae.encode(s

′
)

10: ddpg.remember(s, a, r, s
′

)
11: ddpg.train()
12: steps← steps + 1
13: if done then
14: s← env.reset().flatten()
15: s← vae.encode(s)
16: else
17: s← s

′

Figure 3: Gym-Duckietown map for experiment 1

4. Experiments
4.1. Experiment 1

The first experiment I set up was to have the agent learn
to drive in a straight line. The map used is shown in Figure
3. To start, the agent was placed in the middle of the lane.
The optimal policy would be to just drive straight without
moving the steering wheel. At every time step, the agent re-
ceives a reward computed by the reward function. A reward
of -10 is given for driving off the road.

4.1.1 Reward Function Exploration

The original simulator had a reward function as follows

R(s, dot, d) = (1.0 ∗ s ∗ dir) + (−10 ∗|d|)

where s is the speed of the robot, dir is the dot product
of the robot (where 1.0 is facing forward), and d is the dis-
tance to the middle of the lane. Simply put, the agent should
stay in the center of the lane and face forward. I trained the
agent using this baseline reward function and observed an
interesting result. When the agent was going to drive off
center and stop receiving the positive reward, it stopped in
its tracks and didn’t move at all to still collect positive re-
wards. This revealed a fault in the original reward function.

4

Figure 4: Experiment 1 Results. The plot shows the average
reward at every iteration of the training sequence, averaged
over 10 trials. The ideal average reward would approach 1.0

There is not enough emphasis on making forward progress.
Thus, I added another term movePenalty

R(s, dot, d) = (1.0∗s∗dot)+(−10∗|d|)+movePenalty

where

movePenalty =

{
0 if ∆ x > 0.02 cm/s
−1.5 else

∆ x is the change in distance of the DuckieBot. The thresh-
old 0.02 cm/s was a parameter chosen by trial and error.

The agent was able to achieve the desired results
with this reward function for both the DDPG+VAE and
DDPG+Raw. See the video in the supplementary for both
working. Upon careful examination of the policy, an inter-
esting fact is the agent actually learned a near discrete pol-
icy for both methods. As seen in the video, there is ’jerky’
steering motion which is something not expected from a
continious control algorithm. It learns to always drive for-
ward with max velocity, which is expected based on the re-
ward function, but it also learns to steer left and right with
max value (1 or -1).

4.2. Experiment 1 Discussion

Figure 4 details the average reward of the agent over
20,000 training steps. That is, every iteration of the train-
ing loop, the reward for current transition from s to s

′
was

added to the current total reward, divided by the number of
steps, and recorded in the plot. The reward to start is ex-
pected to be low as the agent has not trained, and the ideal
number to approach would be around 1.1 as this is about the
max reward the agent may receive based on the reward func-
tion detailed in the previous section. The reward is averaged
over 10 trials and shows standard deviation error bars.

Figure 5: Gym-Duckietown map for experiment 2

As Figure 4 suggests, DDPG with raw images as in-
put does not out perform DDPG with VAE. While my data
proves otherwise, I still support the original hypothesis that
DDPG+VAE would outperform DDPG+Raw. I feel as if
my setup and experiment is not enough to disprove this hy-
pothesis. There are a number of aspects which contribute to
my final result. Mainly, I am thinking that the set up may
be ’easy’ enough for the DDPG with raw images to learn.
In order for the agent to achieve max reward, all it needs to
do it look forward and drive straight. Thus, there are limited
frames that the agent needs to learn from. I would think that
VAE might help significantly when there are different types
of roads involved - straight, left curve, right curve, right
turn, left turn, etc. This is a factor that caused me to ex-
plore a new experiment. In addition to being ’easy’ enough
to learn with just raw images, there are other factors where
my implementation could be improved, which are outlined
in the conclusion.

One aspect that was slightly better with the DDPG+VAE
was the training time of the agent. Since the input dimen-
sions where significantly smaller, the agent was able to train
slightly faster than the raw image variant. If you factor in
the time to collect the images and train the VAE, then there
is not much significance for using the VAE based model.
The raw image variant still used relatively small images of
3x64x64, so there should be a more significant speedup if
the images are larger.

4.3. Experiment 2

For the second experiment, I wanted train my agent on
the same map as the the official AIDO lane following com-
petition with the hope of working towards a submission for
the competition. The map is shown in Figure 5 and con-
tains both left and right turns in addition to the straight away
roads.

5

Figure 6: Training reward for a single trial of experiment
2. It is shown here that the agent is never achieve a positive
reard. A positive reward corresponds with staying the in the
middle of the lane. The agent stays in the middle of a lane
for the straight away sections, but not for the curved sections
of the map. See the supplementary video for a demonstra-
tion of this.

4.4. Experiment 2 Discussion

This experiment did not go as planned and the agent was
not able to learn the curves on the map. I began by us-
ing the same reward function as experiment 1, where I en-
courage the agent to be moving forward, looking straight,
and in the middle of the lane for a positive reward. The
biggest issue with this experiment was the fact that there
are sparse positive rewards when the agent is at a curve.
What happens is the agent is encouraged to be moving fast
from the movePenalty in the reward function, so when it
reaches the curve it must slow down to ’physically’ be able
to stay in the center of the curve. Without slowing down, the
agent will be moving to fast, and wont turn quick enough.
This makes my modification of the original reward function
counter intuitive because now the agent needs to drive slow
to make it past the curve. The agent actually learns that it
will get less negative reward if it drives off the road instead
of attempting to stay in the middle because the cumulative
negative reward when attempting to stay in the middle of
the lane is more than the −10 for driving right off. Thus, as
seen in Figure 6, the best policy learned is one that receives
an average reward of about 0. There is video of this in the
supplementary submission.

I have spent the majority of this project trying different
reward functions to guide the agent to learn how to drive
on the curves. To begin, I got rid of the movePenalty and
observed the same issue where the agent is not encouraged
to make forward progress. I have tried a lower threshold
of ∆x described in the first experiment. I have tried only
incorporating the movePentalty when the agent is not on
a curved tile, giving it the option to slow down on curves.
I have tried giving the agent a lot larger negative reward to
prevent the agent from learning to drive off the road. All of

these have not been successful in learning the curved part of
the map. From this, it became apparent that I need to find a
mixture of encouragement for forward progress, but not too
much emphasis so the agent could still learn the curves.

As I mentioned in experiment 1, the agent actually learns
a near discrete policy, meaning that the actions it takes are
always either exactly or close to -1, or 1 for the steering an-
gle and 1 for the velocity. It makes sense for the velocity to
be max because it is rewarded for making forward progress.
It does not make clear sense why the steering angles are
near discrete. This raised more alarm for the second ex-
periment, because the agent must use continuous actions on
the curved part of the road. I feel an explanation of why
the steering angles are near discrete will help solve some of
the issues I’ve had for experiment 2. My initial reasoning
for this is maybe the models are too shallow and are doing
something equivalent to over fitting, where the agent is not
able to learn an optimal policy due to the restriction of the
network themselves, not the reward function. Further ex-
amination of my models is required to get to the root of this
observation.

A VAE was not trained for this experiment because I was
unable to successfully train the agent with use images and
I would not have anything to compare it too. It may work
better than raw images, but I infer the reward function is a
bigger issue than the state representation.

5. Conclusion
After the completion of this project, I have gained in-

sight on how difficult it is to get RL applications to work
well. Most of my time was spent trying to tune the reward
function. I have a list of improvements that are suggested
as future work.

• Different network architectures - I used fully con-
nected networks for all the architectures. I would think
CNN architectures may be better at creating features
for state representations.

• Tuning Networks - Since most of my time was spent
on the reward exploration, I did not change any pa-
rameters at all. I followed the paper in the original
DDPG paper [4]. A hyperparameter search may prove
to be beneficial to find parameters that work best for
my problem instead of all the problems in the paper.

• More training images for VAE

• Different Algorithm - Maybe an algorithm like PPO
may be able to learn a better policy?

• Linear Function Approximation - Deep reinforcement
learning has proven to be difficult to tune and work
well. Maybe I could receive similar or better results
using a different function approximator than a neural
network.

6

• Wayve explains the use of prioritized experience re-
play [7], which is a method to improve on randomly
sampled tuples of experiences during RL training and
is based on sorting the tuples. This may improve per-
formance of both of my algorithms.

• Exploring different Ornstein-Uhlenbeck process pa-
rameters to encourage, discourage more/less explo-
ration

• Other dimensionality reducing methods instead of
VAE. Maybe something like PCA?

As for the AIDO competition, I have made the decision
not to submit this work. It became apparent to me as I
progressed through the project how difficult it is to get a
perfectly working model using reinforcement learning. If I
was to continue with this work for the submission, I think
I would rather go towards the track of imitation learning.
While this would introduce a wide range of new problems,
I think intuitively it moves more sense to ”show” the robot
how it should drive on the road rather having it learn from
scratch. I even think classical control methods may work
better or just as good as any machine learning based algo-
rithm. Although I will not submit to this competition, I am
glad I got to express two interests of mine in reinforcement
learning and variational autoencoders.

The supplementary documents for this report include the
training set for the VAE, a video of experiment 1 work-
ing properly for both DDPG+Raw and DDPG+VAE, and
a video of experiment 2 not working properly. The code has
been posted to GitHub (Click for link).

References
[1] M. Chevalier-Boisvert, F. Golemo, Y. Cao, B. Mehta,

and L. Paull. Duckietown environments for ope-
nai gym. https://github.com/duckietown/
gym-duckietown, 2018.

[2] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M.
Allen, V.-D. Lam, A. Bewley, and A. Shah. Learning to drive
in a day. arXiv preprint arXiv:1807.00412, 2018.

[3] G. Konidaris, S. Osentoski, and P. S. Thomas. Value function
approximation in reinforcement learning using the fourier
basis. 2011.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra. Continuous con-
trol with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[6] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone,
M. Cap, Y. F. Chen, C. Choi, J. Dusek, Y. Fang, et al. Duck-
ietown: an open, inexpensive and flexible platform for au-
tonomy education and research. In Robotics and Automa-

tion (ICRA), 2017 IEEE International Conference on, pages
1497–1504. IEEE, 2017.

[7] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized
experience replay. arXiv preprint arXiv:1511.05952, 2015.

[8] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Man-
sour. Policy gradient methods for reinforcement learning
with function approximation. In Advances in neural infor-
mation processing systems, pages 1057–1063, 2000.

[9] G. E. Uhlenbeck and L. S. Ornstein. On the theory of the
brownian motion. Physical review, 36(5):823, 1930.

[10] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD
thesis, King’s College, Cambridge, UK, May 1989.

7

https://github.com/bryonkucharski/Learning-to-Drive-with-Reinforcement-Learning-and-Variational-Autoencoders
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown

