
Language Modeling to Generate Lyrics for Hip-Hop and Gospel Songs

Bryon Kucharski
bkucharski@umass.edu

Damain Moquin
dmoquin@umass.edu

Juexing Wang
juexingwang@umass.edu

Weiqiu You
wyou@umass.edu

1 Problem statement 1

The main goal of our project is to generate song
lyrics for the Hip-hop and Gospel genres. For a
given genre and start word, we generate a full song
with multiple verses in that genre. We want our
lyrics to be as coherent and meaningful as possi-
ble, ideally indistinguishable from human-written
lyrics in these aspects. To do this, we implemented
two RNN models trained on Gospel and Hip-Hop
song lyrics respectively.

We think that lyric generation can be very use-
ful for musical artists that have writers block. If
a songwriter has no idea what to write about or is
unsure on how they want to word a line or verse,
they can generate new songs to spark their creativ-
ity and give them new ideas. Lyric generation is
still very difficult for even the most advanced nat-
ural language models to get right. There are many
aspects of songwriting to consider such as rhyme
scheme, syllable count, melody, rhythm, theme,
wordplay, etc. For this reason, we are not attempt-
ing to replace the musical artist with our model;
we want to assist them in the songwriting process
by giving them new ideas. For now at least, there
is still an aspect of human creativity and musical
knowledge that cannot be emulated artificially.

The Hip-Hop/Gospel split has been a very in-
teresting aspect of our project. The varied musical
interests within our group was a major factor in
this split. There are also many large differences
between the Hip-Hop and Gospel genres. They
differ in lyrical content, choice of themes, repeti-
tion, lyrical complexity, target audience, and much
more. As a side goal, we wanted to figure out
how these differences would affect song genera-
tion, and whether one genre was more complex

1All code and example output for each model can
be found at https://github.com/bryonkucharski/Language-
Modeling-to-Generate-Lyrics-for-Hip-Hop-and-Gospel-
Songs

or difficult to model than the other. To do this,
we preformed some data analysis on our dataset
and representative songs of the two genres, and
we carefully looked for differences in the output
of our models for each genre.

2 What you proposed vs. what you
accomplished

• Create hip hop dataset

• Create gospel dataset

• Create bi-gram model

• Create tri-gram model

• Create LSTM model

• Give input sentences to each model and ob-
serve output

As explained in later sections, we found that it
may not be fair to ask a model to generate some-
thing that it is not trained on, meaning training
on gospel data and asking to generate lyrics not
related to God. Thus, we decided to not pursue
the original plan to give each model the same start
words.

3 Related work

Nguyen and Sa (2009) created a rap lyrics gener-
ator that makes new rap lines based on an existing
corpus of rap songs, and emulates the rhyme and
syllable structure of the genre. Their dataset was
a database of over 40,000 rap song lyrics scraped
from a hip-hop lyrics website. They sampled
from an interpolated quadragram language model
to generate their lyrics. Much of our approach
was inspired by this method, from the lyric web-
scraping dataset collection to the n-gram model
for lyric generation. Their discussion about at-
tempting to create specific themes for lines and
verses inspired us to attempt using start words to

make lyrics conform to a theme. However, our ap-
proach differs from theirs in significant ways and
tries to expand upon their method. We generated
Gospel as well as Hip-Hop/Rap lyrics so that we
could examine how our results differed for each
genre, and so that we could determine if one genre
might be harder to model lyrics for than another.
We also used n-gram models as our baseline, but
we decided to implement a LSTM model to im-
prove the coherency and meaning of the lyrics. We
opted not to use a rhyming database or directly en-
force a rhyme scheme on the lyrics, to keep our
model relatively simple but also because enforc-
ing rhymes could negatively impact aspects like
coherency and meaning.

Watanabe et al. (2018) proposed a model for
generating lyrics based on a given input melody.
They utilized an RNN language model trained
on over 54000 Japanese song lyrics as well as
1000 lyric/melody pairs created using digital mu-
sic scores available online. For the song lyrics,
they created pseudo-melodies by using the dis-
tribution of notes, rests, and pitch sampled from
the lyric/melody pair data. Both this project and
ours sought to generate song lyrics for musical
artists, but theirs was much more focused on the
relationship between lyrics and melody while ours
focused on the differences in genres. Both ap-
proaches used perplexity and human evaluation as
metricc of evaluating the output of our models.
Using melody as a means of data for the model
is interesting and does seem to increase the listen-
ability and flow of the lyrics, but their results also
suggest that it might slightly negatively impact the
coherence and meaning of their lyrics. We also be-
lieve there is value in the ability to generate a song
without an input melody in mind.

There are multiple other papers that describe ap-
proaches for generating lyrics based on melody.
Oliveira et al. (2007) created a model that gener-
ates lyrics for an existing melody, using their anal-
ysis on the relationships between lyrics, melody,
beats, tempo, and rhyme to select vocabulary.
Nichols et al. (2009) used melody-lyrics parallel
data to investigate the correlation between things
like syllable stress and pitch. Ramakrishnan et al.
(2009) proposed a statistical model to generate
Tamil lyrics for a melody, utilizing Dijkstra’s
Shortest Path Algorithm and melody-lyrics data.

There are other similar projects that focus on
different aspects of lyric generation and con-

tain ideas potentially worth implementing in our
project in the future. Barbieri et al. (2012), Abe
and Ito (2012), and Davismoon and Eccles (2010)
all proposed models for generating lyrics under
various constraints like rhythm, rhyme, and part
of speech. Hirjee and Brown (2010) developed a
rhyme detection tool using a probabilistic model,
and analyzed phonetic patterns in words. Potash
et al. (2015) used an LSTM as well as an n-gram
model to generate lyrics in the style of a specific
Hip-Hop artist. Malmi et al. (2015) generated
fixed 16-line rap verses line by line by sampling
full lines from existing rap songs. There are many
different approaches to lyric generation as well as
relationships to analyze in lyric data.

4 Our dataset

4.1 Data Collection

To begin the data collection, we first needed a list
of artists to collect lyrics for. To do this, we gath-
ered all of the names from the List of Hip Hop
Artists Wikipedia list for the Hip-Hop artists and
all names from the List of Christian Worship Mu-
sic Artists Wikipedia list for Gospel artists into a
text file. With this text file, we used a python li-
brary called PyLyrics3 to scrape LyricWiki web-
site. This library saves lyrics for each artist’s songs
as text files in a subdirectory for that artist.

Figure 1: The top 50 most common words in our hip-
hop corpus, excluding some common stop words like
”the”, in word cloud format. Size is proportional to
the words relative occurrence rate. The most common
word was ”I’m”, with 168,059 appearances, and the
fiftieth most common word was ”ass”, with 18,601 oc-
currences.

https://en.wikipedia.org/wiki/List_of_hip_hop_musicians
https://en.wikipedia.org/wiki/List_of_hip_hop_musicians
https://en.wikipedia.org/wiki/List_of_Christian_worship_music_artists
https://en.wikipedia.org/wiki/List_of_Christian_worship_music_artists
https://github.com/jameswenzel/pylyrics3
http://lyrics.wikia.com/wiki/LyricWiki

Figure 2: The top 50 most common words in our gospel
corpus. The most common word was ”love”, with
18,832 occurences, and the fiftieth most common word
was ”live”, with 2,997 occurrences.

4.2 Data Prerocessing

Once we collected all lyrics, we needed to clean
the data to use with our algorithms. Each song
was preprocessed by:

1. Removing the punctuation from each token

2. Removing tokens that are not alphabetic

3. Make all tokens lower case

These steps ensure that the same words with
different punctuation, annotation, or capitalization
are treated as the same one word. For example,
”that”, ”That”, ”that,”, and ”that-”, all become
”that” after preprocessing. This ensures that things
like word counts are accurate for our model to
train on.

Then, a training set and test set was created by
designating 20 percent of the songs for testing and
80 percent of the songs for training randomly in
each genre’s dataset. The training set was for our
model to train on, and the test set was used to test
our model’s performance. We made sure not to
train our models on the test set.

4.3 Data Analysis

Our dataset consists of 28063 hip-hop and 9945
gospel songs. Below are some example songs
from both genres. They are contained in our
dataset as well as the billboard top 50 for their
genre from 2017. We believe that they are fairly
representative of the major tropes of each genre.

Excerpt from ”Bank Account”

I pull up in ’Rari’s and shit, with chop-
pers and Harley’s and shit (for real)

I be Gucci’d down, you wearing Lacoste
and shit (bitch)

Yeah, Moncler, yeah, fur came off of
that, yeah (yeah)

Triple homicide, put me in a chair, yeah
(in jail)

Triple cross the plug, we do not play fair,
yeah (oh God)

Got ’em tennis chains on and they real
blingy (blingy)

Draco make you do the chicken head
like Chingy (Chingy)

Walk in Neiman Marcus and I spend a
light fifty (fifty)

Please proceed with caution, shooters,
they be right with me (21)

Bad bitch, cute face and some nice titties

Figure 3: Excerpt from the first verse of ”Bank Ac-
count” by 21 Savage, 2017 Hip-Hop Billboard num-
ber 23 and part of our dataset. The central topic is
about the artist’s wealth, but it also has lines about vio-
lence/murder (”triple homocide”), drug dealing (”triple
cross the plug”), and women (”bad bitch, cute face”).
The verses are lengthy, and there are many similes and
references in the song.

Songs are separated into lines, which are part of
verses. Typically there is a chorus or hook in most
songs. There is also typically a rhyme scheme and
a rhythm that is obeyed throughout the lyrics. A
song is usually about a specific set of topics or
themes, that differ based on the genre. In general,
songwriting is a complex creative process that is
difficult for even the most skilled musical artists.
For this reason, generating coherent ad meaning-
ful song lyrics is a daunting task.

Hip-hop and Gospel songs differ in many ways
(e.g. lyrical content, choice of themes, repetition,
lyrical complexity, target audience, etc). There
are also some qualitative statistical differences be-
tween the two genres that we examined, and are
demonstrated in the table below.

Since there are more popular Hip-Hop songs
and artists than Gospel songs and artists, we have
more data for Hip-Hop lyrics. Our Hip-Hop mod-
els thus had more data to train on than the gospel
models. Hip-Hop has noticeably more lines per

Excerpt from ”Change Me”

Change me, oh God
Make me more like You
Change me, oh God
Wash me through and through
Create in me a clean heart
So that I may worship You

Change me, oh God
Make me more like You
Change me, oh God
Wash me through and through
Just create in me a clean heart
So that I may worship You
I need you to...

Figure 4: The first two verses of ”Change Me” by
Tamela Mann, 2017 Gospel Billboard number 2. The
song is about God purifying the artist, and it does not
stray from this topic at all. The lines and verses are
fairly short, and there is significant repetition of words
and lines.

Genre dataset: Hip-Hop Gospel
Total number of Artists: 531 196
Total number of songs: 28063 9945
Total number of lines: 1831744 329348

Total number of words: 14335128 2003785
Average lines/song: 65.27 33.12

Average words/song: 510.82 201.49
Average words/line: 7.83 6.08

Avg. unique lines/song: 53.95 22.32
Unique lines/song (%): 82.65 67.39

Avg. unique words/song: 218.85 74.93
Unique words/song (%): 42.84 37.19

Figure 5: A table displaying some comparative statis-
tics of our Hip-Hop and Gospel datasets. We have sig-
nificantly more data for the Hip-Hop dataset (artists,
songs, lines, words), Hip-Hop songs have a higher
lyrical density than Gospel (lines/song, words/song,
words/line), and Hip-Hop on average uses more unique
lines and words than in Gospel.

song, as well as more words per line and per
song on average than Gospel. Based on the per-
centages of unique lines and words, Hip-Hop also
repeats less words and lines than Gospel on av-
erage as well. From this data, we prepose that
Hip-Hop songs are more compositionally complex
than Gospel songs on average. Overall, there is
more data and more unique data for any language

model we use on the Hip-Hop dataset then on the
Gospel dataset.

Our team also examined the lyrics of the Bill-
board Top 50 songs in Hip-Hop and Gospel for
the year 2017. We discussed and recorded some of
the top themes for each song, based on the lyrical
content. Themes like ”God”, ”Jesus”, and ”glory”
dominated the Gospel charts (with God being a
theme in almost every top 50 song), while themes
like ”money”, ”drugs/alcohol”, ”sex”, and ”vio-
lence” appeared frequently throughout the Hip-
Hop top 50. Based on the diversity of themes we
observed and recorded, it seemed to us that Hip-
Hop songs varied in themes a lot more than Gospel
songs, between and within songs. In fact, from
our observation, Gospel songs tend to remain fo-
cused on one main topic for the entire song (usu-
ally God related), while Hip-Hop songs change
topic repeatedly throughout the song, often from
line to line. This actually makes it easier to gen-
erate coherent lyrics for Gospel, since most lyrics
will tend to be God-related and relate to each other
with ease, while in Hip-Hop it is difficult to jump
from one topic to another while still keeping the
coherence and central theme of the song in tact.

Another interesting observation from the Bill-
board Top 50 was that there are some shared
themes between top songs of both genres, however
the context for said themes differs significantly be-
tween genres. For example, the line ”I’ve got true
love instead of pain” from VaShawn Mitchell’s
”Joy” is talking about true love for God, so a cen-
tral theme for the song we decided on is ”love”.
The lines ”And you are unforgettable / I need get
you alone” from French Montana Ft. Swae Lee’s
”Unforgettable” refer to feelings of love/lust for
a woman in a club, so a theme we decided on
is ”love”. Both songs share the same theme, but
the context of the theme differs significantly be-
cause of the difference in topics explored by both
genres. Songs in Gospel that have ”greatness” as
a theme usually talk about the greatness of God,
while songs in Hip-Hop with that theme usually
talk about the greatness of the artist’s life. Simi-
larly, Gospel songs talk about God solving all of
their ”problems”, while Hip-Hop songs talk about
the ”problems” associated with the ghetto or drug
trafficking.

Figure 6: Top three themes for the top ten songs in the
Gospel Billboard Top 50. God is a theme in almost
all Gospel songs. Other themes like victory, problems,
and faith are prominent in the Top 50 and the genre as
a whole.

Figure 7: Top three themes for the top ten songs in
the Hip-Hop Billboard Top 50. The themes tend to
be more varied than in Gospel songs, but topics like
wealth, drugs, and sex appear quite often.

N=1
N-gram model

N=2

N=3

We produce good lyrics like this

We produce good lyrics like this

We produce good lyrics like this

unigram

bigram

trigram

We
produce

good
lyrics

We produce
produce good

good lyrics

We produce good
produce good lyrics

good lyrics like

Figure 8: Example of N-gram models

5 Baselines

We implemented an N-gram model as our base-
line algorithm. N-Gram is an algorithm which is
based on a Statistical Language Model. Compar-
ison between it and a Recurrent Neural Network
Language Model(RNN/LSTM) could be mean-
ingful. N-gram models focus on the relation-
ship between a current word and the previous
N-1 words and RNN/LSTM focus on the re-
lationship between entire sentences and verses.
We were wondering which model could generate
more ’unartificial’ verses. Since N-gram models
are Statistical Language Models, we didn’t apply
train/validation/test splits to these models.

Our model can read in all the data files in ”.txt”

format first and preprocess this data to a dictionary
type. After preprocessing, we will get a ”.txt” file
which contains the aggregated lyric data in a dic-
tionary format. Our algorithm will detect whether
this aggregate ”.txt” file exists every time when
run. Hence we can save a lot of time on process-
ing data and get several results with one dataset,
which will be helpful in our analyzing parts of our
result.

Now, our N-gram model can generate songs in
both Gospel and Hip-Hop tracks using either Bi-
gram or Tri-gram two models. Our model has a
parameter ”lpv”(length per verse). It is correlated
with length of verse in our dataset. We are trying
to use some random or artificial ”lpv” to replace
the original ”lpv” to control the length of verse
which will be generated from model so that we can
get random length songs as our wish. The only
limitation in this part is the size of dataset; Hip-
Hop works well but Gospel songs need more data
to generate songs in a natural way. Another pa-
rameter ”tpl” controls tokens per line. To make the
sentence of our generated song look more unarti-
ficial, we won’t apply random ”tpl” data in this
parameter.

6 Your approach

6.1 N-Gram
We implemented our N-gram model in Bi-gram
and Tri-gram two ways. Bi-gram model

P (w1, w2....., wm) =
m∏
i=1

P (wi|wi−1)

Tri-gram model

P (w1, w2....., wm) =
m∏
i=1

P (wi|wi−2wi−1)

Probability of Bi-gram model

P (wi|wi−1) =
C(wi−1wi)

C(wi−1)

Probability of Tri-gram model

P (wi|wi−1) =
C(wi−2wi−1wi)

C(wi−2wi−1)

We can treat song’s word as key of dictionary
and count total amount of each word to save it
as the value of key. Then, we can compute the
probability of each combination by using dictio-
nary’s value and then produce our output. We will

treat each verse of output as a song since our pre-
processed data didn’t divide each song to several
verse. So the ’lpv’ will represent lines per song
rather than lines per verse.

6.1.1 Bi-Gram Output
The most common length of Hip-hop songs in our
data is 56 lines, 543 of total songs have 56 lines in
their songs. Below is an example output of the hip
hop Bi-Gram model

Street smokin the horns off that you be-
gin

Look but that he comes
Gotta some grown
Stackin paper like plutonium in my

homie
His own
You gotta hold your mind and when we

still gonna come off my face
The pimps man
I feel
Gone its the penn for the metal fist fulla

keys

The most common length of Gospel in our data is
24 lines, 332 of total songs have 24 lines in their
songs. Below is an example output of the gospel
Bi-Gram model

Somebody gets sweet sound here goes
wild night i sing because

Through me in waves and pain
Yes i will rise and works
At his heart is no limits
No matter where would break this hill
Sometimes hard to me
Kyrie eleison down low
And righteousness they shall come out

the saints that i love
You alone
And worship you

6.1.2 Bi-Gram Discussion
The Bi-gram model in Hip-hop seems to work bet-
ter than in Gospel. The generated songs of Hip-
hop produce more meaningful sentences in a song
since short sentences are more commonly pro-
duced in Hip-hop than in the Gospel model. Syn-
tactic structures are bad in both types of output.
The Bi-gram model only focuses on the current
word and former word so it will ignore sentence
structure and choose the combination with highest

probability as output rather than considering syn-
tactic structure and give some meaningless results
with high probability.

6.1.3 Tri-Gram Output
Since we are using the same dataset on Bi-gram
and Trigram, the number of lines is the same as
above. Below is an example hip hop song using
the Tri-Gram model

im the best lucky bomb im finally so atat
catch your body with some panties to the

air
well watch some head on your ass up-

stairs sometimes
if you seem to fight then well bivins let

the fk off your head like a train about
its the perfect colors suede father know

i cant make a chance
one mo industrialization just to pay to

give
imma manage your mind somewhere at

all and thrill me
we all about to find late i know i wont

grve my life is a true loss
pose to be sleepy its the lava time pre-

meditated cause it will last maybe
bums egyptain

Below is an example gospel song using the Tri-
Gram model

zombies and ghosts give us some real-
ization

joys send your children for you
send revival
as you pray you will come
everyone and poor and eight days
as it takes in heaven testifies in awe for

your kingdom
not to be an same if i die
and give anything to see
let us hear the prayers of god
for your people for him for all who
have mercy by your power
will you make me courageous
be the weak lord lord here below church
lord there is no other god

6.1.4 Tri-gram Discussion
We are able to generate some better sentences
in the Tri-gram model compared to the Bi-gram
model. Both models contain valid syntactic struc-
ture and sentencing meaning. The Tri-gram model

works better than Bi-gram since it takes more
words into consideration in process of prediction.
Longer relationships between prediction words
can allow our model each word on one POS, this
is the premise of a meaningful sentence.

6.2 LSTM
For the LSTM models, each song was added to one
large text file and tokenized as input to the LSTM.
We considered two different methods to structure
the data as input to the model. The first considera-
tion was to treat each line of a song as input to the
model. To prepare the data, each song was added
to one large text file, with a newline at the end of
each line. When all lines of the dataset where col-
lected, they were split 80 percent train, 20 percent
test, and then 10 percent of the train was split again
into a validation set. These sets where tokenized
by creating word-to-index and index-to-word dic-
tionaries, and adding a special token <eos>at the
end of each line. To generate a new song, we ran-
domly started with a word from the vocabulary
and produced x amount of words. Any time the
special token was outputted from the model, it was
replaced with a newline character.

Below is one example of the model using this
approach.

you gettin caught when you think that
somethings ought to fly away i stay

your body anothers so if i beautifuuul
get a mic gemu

a flock of other days and i can
still get my need in a manana
and i bought my ass on the corner and

was off at the fuckfest the glocko
tear it down i can be hot

held big girls and they cool like shaq*
cause we like what it went to is

got torsos out they ridin rollin lean

Analyzing this result, it seems as if the model is
similar to the Ttri-Gram model and beginning to
model what we expect from a hip hop song, with
* representing a metaphor, and the bold text rep-
resenting a rhyme. Note there is not an example
from version 1 of the model because of an error
found while building the dataset. Instead of re-
training version 1, the team decided to move on to
version 2.

While this example shows the promising begin-
nings of a song, one of the major flaws is that
there is not any relation between lines. It seems

as if random lines where just stuck together. We
aimed to make an improvement for our model to
contain more structure over the course of the en-
tire song. To do this, a new dataset was built
with a different structure. In version 1, a new-
line character was added at the end of each line,
all lines were shuffled and split into test/train/valid
sets, and the corpus was tokenized by adding a
special character at the end of each line. In ver-
sion 2, instead of separating and shuffling each
line, the entire song will be kept together. In the
dataset, each line of each song will still end with
a newline character, but each song will be sepa-
rated by a single line with the ’-’ character. The
dataset is split and shuffled per song rather than
per line. When tokenized, the newlines will be re-
placed with a <eol>token, and the end of songs
will be tokenized with a <eov>token. To gen-
erate a new song, the model is asked to produce
produce words until the <eov>appears, replacing
any <eol>with a newline character.

The below example shows the subject over a
few lines with the subject matter of being with a
women. In general, this model is slightly better
than version 1, but still not perfect. All of the re-
maining examples and perplexity calculations are
with version 2 of the model.

if you dan wanna be the star baby
and i dont know what i do but my baby

boils and sin baby
punish the whole world needs to holla at

your ass later
she wish to be there i like you heard of

the freak
the blades are what i know i wanna

know you havent asked me girl
twotwentyfive blowing with the infil-

trate and cunnilingus

The code and architecture closely mirrors the
work of Salesforce in two research papers (Merity
et al., 2017) (Merity et al., 2018).

7 Exploration Start Phrases

One of the original plans we had for this project
was to give each model the same input phrase and
observe if the model will stuck to that subject.
Based on observations, it seems as if the LSTM
models are best at sticking to ”general” subjects.
For example, it may generally stick to the sub-
ject ”dogs” for a few lines, but doesn’t stick to the

subject at all when asked to produce lyrics about
”drake”. I also noticed that the first few lines may
stick to a subject, but the rest of the lines typically
do note. This section lists a few examples of the
models generating lyrics based on the first word in
the first line. Note that these are handpicked ex-
amples that worked the best and there were plenty
of examples that did not work at all.

7.1 Hip Hop

police

police these californians rock weed
here you go crazy too fast
hell hatreds no surrender please keep em

on the floor
apunto up with a rolls full of lye

shoeshop
of when in front of it black coming up

your cream
if they want to build aint fight on a friday

night sees in no place
my lil president was at the time bodid-

dly out returned today of construc-
tion when were stepping

Words like ’hatred’, ’surrender’, ’fight’, portary
the long lasting battle the hip hop community has
had with law enforcement.

Jesus

jesus connects
sell crack a hundred
oshay crypts
seven nails on own deficient
before the spiritual mannequins goes

and
embrace your hand to get the pain from

track to addicted to the most to be
articles

melt skin pour a machine and by some
bomb to eat quick

Even though this is the hip hop model, there is
still words like ’spiritual’ and ’embrace’ which are
similar in context to Jesus.

drugs

drugs mixtapes aint even killas
two pills inch bullets like unhooked le

kurupt
im puffin terrorists smacked the arm and

chill without fog orangeyellow

for the game and im so waking off to
cooool

the takin my job light with ya brain

Words such as ’pills’, ’puffin’, ’light’ all refer-
ence drug use.

7.2 Gospel

sex

sex down the cup
that were going so long than you yeah
our eyes are the kind of life
beyond the whirlwind set us free

Sort of talking about a relationship between two
people

death

death
hallelujah hallelujah
your blood is sufficient for us
hallelujah
god your love is deeper sun

Referencing death and Jesus’ sacrifice
beautiful

beautiful
faithful you are lord
jesus you are beautiful
you are wonderful

lay

lay down my life
its a sweet victory
im blurred by the strategies of the more
but as it broke through the pain

Speaking about how a life is a sweet victory

8 Error analysis

8.1 Perplexity

Perplexity is used to compared the models of
the same genre. For example, how much better
does an RNN model do comparing to an N-Gram
model. It cannot be used to compare models of
difference genres.

Perplexity is the inverse probability of the test
set, normalized by the number of words. Here
we are using trigram perplexity to compare our bi-
gram model, trigram model, and RNN model to

average of songs in validation set. Perplexity as-
sumes that the best language model is one that best
predicts an unseen test set.

PP(W) = N

√√√√ N∏
i=1

1

P (wi|wi−2wi−1)

Here are the perplexities of songs in the valida-
tion set and songs generated by each of our mod-
els.

Perplexity Hip-Hop Gospel
Average in Validation Set 23.66 13.32
Bigram Generated Songs 116.17 50.27
Trigram Generated Songs 22.61 12.86

RNN Generated Songs 54.89 27.43

We can see from the above table that bigram
generated songs have much larger perplexity than
average in the validation set, meaning that they
are not a good prediction for human written songs.
Trigram generated songs have the closest perplex-
ity scores, and the scores for both hip-hop and
gospel songs are very close to average in valida-
tion set. This means that trigram generates very
average songs. It is interesting that the RNN falls
between trigram and bigram in perplexity. Songs
generated by the RNN have more perplexity than
the validation set. One interpretation might be that
RNN is able to generate creative lines, which leads
to more perplexity. Also, because trigram model is
based on statistics of the frequency, it tends to se-
lect the words that minimize perplexity, while the
whole sentence is not necessarily coherent.

8.2 Human Evaluation

Most detailed evaluations have been discussed in
the previous sections.

RNN produces much more fluent sentences than
ngram models, even though trigram models have
lower perplexity. And RNN is able to stick to one
topic for a couple of lines, which the N-gram base-
line is not able to accomplish due to it being a sta-
tistical model.

9 Contributions of group members

Here we list what each member of the group con-
tributed to this project:

• Bryon Kucharski: Data collection and pre-
processing for hiphop data, LSTM model and
LSTM output analysis.

• Damain Moquin: Data analysis, much of the
research on related work, many of the figures
and tables, lots of writing.

• Weiqiu You: Data collection and preprocess-
ing for gospel data, implemented perplexity
and part of Tri-gram model, error analysis
with perplexity.

• Juexing Wang: Implemented Bi-gram and
part of Tri-gram model, baseline and N-gram
approach discussion.

10 Conclusion

10.1 Tri-Gram vs. LSTM
For both genres, we concluded that the LSTM
model is preferred over the tri-gram models. This
conclusion is based on the flexibility of the LSTM
model and the ability to generate lines that are co-
herent with one another. For example ‘you gave
a place for me this is mine, you gave your life for
me there’ and ‘nothing but your love nothing but
grace, nothing but sky.’ are two generated gospel
lines that are similar in context. Also, the sen-
tence lengths are more random in Tri-gram gen-
erated songs. There are a lot more short sentences
like ‘My baby, You meet, Any day any weather,
I lived for you, No matter what i believe you still
doin here, That god made man, And a pail.’ There
can be super short and super long sentences in
the same song. On the contrary, LSTM generates
more moderate length sentences. This is because
the LSTM model has the option to generate vari-
able words per line and as many lines per song.
This is an expected result as the LSTM model is a
lot more complex and mimics the structure of the
input text rather than just counting words that are
probable to appear with one another.

10.2 Lyrics are difficult to model
We concluded that hip-hop is a difficult task to try
and model. There are a number of reasons that
contribute to this. First, there are many ’types’ of
hip-hop with different styles. There’s sub-genres
inside the genre such as ’mumble rap’, ’melodic
rap’, ’trap rap’, etc. Each of these sub-genres have
dedicated artists that produce different styles of
music. When creating a language model about all
of hip-hop, we are trying to mimic lyrics based on
all of these genre combined. Maybe we might see
better structure and rhyme scheme in the lyrics if
we trained a model on one sub task. in addition to

sub-genres, there is no set structure for a hip-hop
song. Some songs have choruses, some have one
verse, some have many verses, and they all vary
in length. Some songs stick to a subject matter,
while others only have single ’punch lines.’ All of
these factors make it difficult to for a single model
for all of hip-hop. In contrast to a task such as
generating Shakespeare sonnets, this is more diffi-
cult because we are attempting to generate music
from a wide range of artists and styles, opposed to
a single author/person.

Gospel songs were easier to model, mainly be-
cause God, love, and faith seem to always be
prevalent topics. No matter what start word we
give the models, they always reference these top-
ics. There are not any sub-genres, and all of the
artists have the same or similar style or writing.

10.3 Future Work/What to do Differently

• Collect more data. This can almost never
hurt.

• Sub-genre or single artist models. Maybe
create a model just for 90s hiphop or trap rap
etc.

• Think of ways to enforce rhyming includ-
ing end rhyme, slant rhyme, different rhyme
schemes, etc

• Version 2 of the LSTM model attempted to
create a model that has more structure over
the entire song instead of just a single line.
This was better than version 1 of the LSTM,
but still needs more work.

• Create another model for generating a chorus
instead of only verses.

References
Abe, C. and Ito, A. (2012). A japanese lyrics writing support

system for amateur songwriters. In Proceedings of Asia-
Pacific Signal Information Processing Association Annual
Summit and Conference 2012, pages 1–4.

Barbieri, G., Pachet, F., Roy, P., and Esposti, M. D. (2012).
Markov constraints for generating lyrics with style. In
Proceedings of the 20th European Conference on Artifi-
cial Intelligence, pages 115–120.

Davismoon, S. and Eccles, J. (2010). Combining musi-
cal constraints with markov transition probabilities to im-
prove the generation of creative musical structures. In
EvoApplications, number 2, pages 361–370.

Hirjee, H. and Brown, D. G. (2010). Rhyme analyzer:
An analysis tool for rap lyrics. In Proceedings of the
11th International Society for Music Information Re-
trieval Conference. [Online; accessed 17-December-
2018 at http://ismir2010.ismir.net/
proceedings/late-breaking-demo-23.pdf].

Malmi, E., Takala, P., Toivonen, H., Raiko, T., and Gionis, A.
(2015). Dopelearning: A computational approach to rap
lyrics generation. [arXiv preprint; arXiv:1505.04771].

Merity, S., Keskar, N. S., and Socher, R. (2017). Regular-
izing and Optimizing LSTM Language Models. arXiv
preprint arXiv:1708.02182.

Merity, S., Keskar, N. S., and Socher, R. (2018). An Analysis
of Neural Language Modeling at Multiple Scales. arXiv
preprint arXiv:1803.08240.

Nguyen, H. and Sa, B. (2009). Rap lyric gener-
ator. [Online; accessed 17-December-2018 at
https://nlp.stanford.edu/courses/
cs224n/2009/fp/5.pdf].

Nichols, E., Morris, D., Basu, S., and Raphael., C. (2009).
Relationships between lyrics and melody in popular mu-
sic. In Proceedings of the 10th International Society for
Music Information Retrieval Conference, pages 471–476.

Oliveira, H. R. G., Cardoso, F. A., and Pereira, F. C. (2007).
Tra-la-lyrics: An approach to generate text based on
rhythm. In Proceedings of the 4th International Joint
Workshop on Computational Creativity, pages 47–55.

Potash, P., Romanov, A., and Rumshisky, A. (2015). Ghost-
writer: Using an lstm for automatic rap lyric genera-
tion. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1919–
1924.

Ramakrishnan, A., Kuppan, S., and Devi, S. L. (2009). Au-
tomatic generation of tamil lyrics for melodies. In Pro-
ceedings of the Workshop on Computational Approaches
to Linguistic Creativity, pages 40–46.

Watanabe, K., Matsubayashi, Y., Fukayama, S., Goto, M.,
Inui, K., and Nakano, T. (2018). A melody-conditioned
lyrics language model. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 163–172.

http://ismir2010.ismir.net/proceedings/late-breaking-demo-23.pdf
http://ismir2010.ismir.net/proceedings/late-breaking-demo-23.pdf
https://nlp.stanford.edu/courses/cs224n/2009/fp/5.pdf
https://nlp.stanford.edu/courses/cs224n/2009/fp/5.pdf

