
Real-World Projectile Catching with Reinforcement
Learning: Empirical Analysis using Discretized

Simulations
Bryon Kucharski, Adam Ziel, Michael Hickey, Collin Travers

Electrical and Computer Engineering Department
Wentworth Institute of Technology

Boston, MA, USA
{kucharskib, ziela, hickeym2, traversc}@wit.edu

Abstract—Robotic projectile catching has previously been done
with path planning, in which the trajectory is predicted using
basic kinematic equations. In addition, reinforcement learning
(RL) has proven successful in mastering video games, such as 8-
bit Atari 2600 games like PacMan or Breakout. We evaluate the
performance of two RL algorithms, Q-Learning and a Deep Q-
Network (DQN), applied to a simulation of a novel application
of catching a projectile. A continuous physical environment is
translated into a discretized, limited state and action space, and
then solved using RL.

Index Terms—reinforcement learning, discretization, robotics,
simulation

I. INTRODUCTION

From a high-level, reinforcement learning (RL) is a branch
of artificial intelligence in which an agent aims to collect
sufficient experience in a state-space, and then leverage this ex-
perience to determine the optimal action to take for any given
state. Therefore, the training iterations required to solve a
given environment scale exponentially with the dimensionality
of the state space. State-of-the-art RL research has been largely
performed in the domain of video games, most famously
with DeepMinds generalized, pixel-based Deep Q-Network
(DQN), used for solving a wide array of classic Atari 2600
games [1], [2]. Video games appear to be the ideal testing
ground for RL algorithms due to their discrete state-spaces,
clearly defined reward schemes, lack of noise in determining
state, and lack of liability otherwise present in training real-
world agents. Progress in physical RL agents, on the other
hand, has lacked due to failing to meet these criteria based
on their inherent continuous nature. Discretizing continuous
spaces has proven to be successful in solving continuous
environments with RL [3], [4]. Environment discretization
aims to shrink an enormous state space into one in which it is
more computationally feasible to gain sufficient experience of
the state and action spaces. The core aim of this discretization
is to reduce the state and action space, or set of all possible
states, and therefore reduce the required training iterations to
learn a given task.

Research has been conducted towards robotic projectile
catching using a variety of approaches. Kober, Glisson, and

Mistry [5] demonstrated a juggling humanoid robot which
used explicit kinematic equations to predict the landing lo-
cations of the balls. Supervised learning algorithms [6] such
as Support Vector Machines and Gaussian process regression
have been used to learn the trajectory of a ball. The authors
have not found any research on projectile catching using RL.
Our research utilizes the discretization methods along with
the RL algorithms applied to a new domain of catching a
projectile in simulation. The future work section describes the
initial steps taken to transition this simulation into the real
world.

II. METHODOLOGY

Unity, a popular 3D game engine, was used to create a
simulated a projectile catching environment. Fig. 1 shows a
spherical projectile being launched off a ramp, which is then
caught by the cuboid RL agent. The decision was made to
roll a ball down a ramp, rather than just throw a ball freely,
for several reasons. First, as a means of limiting the state-
space, since freely throwing a ball can yield trajectories with
many different initial and final positions in 3D space, as
well as evoke drastically different types of parabolic paths.
These considerations were also shared by the aim to minimize
the window of sensing and have sensing mechanisms remain
statically placed in the environment with limited fields of
view. Lastly, since projectile catching is an extremely time-
critical task, a ramp was used to increase the balls total
travel time, allotting a longer sensing window, and therefore
maximizing the number of full propagations through our signal
path, and consequently predictions, per episode. Though the
RL agent can move instantaneously in simulation, a physical
robot would require nontrivial time to complete actions.

When viewing the environment from a top-down camera
view, the four features extracted to compose a state were the
ball's x-position and speed down the ramp, and the robot's x
and y positions. These features were then discretized uniformly
such that a grid was imposed over the environment, and then
the state of each feature was the grid space that it occupied.
An episode began when a new random spawning location and
initial speed were generated, and ends after the ball lands in the



Fig. 1. Simulated environment in Unity.

robots catching area. A catch occurs if the robot's coordinates
are the same as the ball 's coordinates at the end of an episode.

A. Simulation

The simulation was used to test different state sizes of both
reinforcement learning algorithms. The initial state is created
by selecting a random number between 1 and the number of x
states for the ball x and robot x features, and a random number
between 1 and the number of y states for the robot y and ball
velocity features. The agent then performs a simulated number
of episodes. Each episode the agent performs number of y
states multiplied by the number of x states iterations, which is
the max possible grid space away. An episode begins when a
new random location is generated, and the episode ends after
the total amount of iterations.

III. REINFORCEMENT LEARNING ALGORITHMS

As previously mentioned, successful attempts to catch a pro-
jectile have often used trajectory planning, where the landing
position is calculated and sent to the robot. In our research,
reinforcement learning has been used to teach the robot the
landing position of the ball, rather than calculating it. Two
versions of reinforcement learning algorithms were analyzed.
Each algorithm had the same state, action, and reward setup.
Every iteration, the agent in a current state interacts with the
environment by taking an action chosen by the RL algorithm.
Upon interaction, the environment returns a new state prime
and reward for that action. After enough iterations, agent will
converge to the ideal action to take in every state.

A. State-Action Representation

Utilizing the discretization methods, the state of the rein-
forcement learning algorithms includes a list of four features
including the robot’s x grid location, the robot's y grid location,
the ball's x grid location, and the ball's speed. The agent has
the option to choose from five different actions which consist
of move up, down, left, right, or stay

B. Reward Function

The reward is given to the robot after every action is taken
and is based on the proximity of the robot’s coordinates to
the ball’s coordinates. The distance between the robot and the
ball is calculated using (1) at every iteration

R(xr, yr, xb, sb) =

√
(xr − xb)2 + (yr − sb)2 (1)

where xr is the x position of the robot, yr is the y position
of the robot, xb is the x position of the ball, and sb is the
speed of the ball. If the agent takes an action that decreases
this distance, it receives a reward of +1. If an episode is at an
end and the robot is in the same grid location as the ball, it
is a catch and the agent receives a +10 reward. For all else,
the agent receives a -1 reward. The robot speed and the robot
y position are discretized on the same scale, meaning a speed
of 0 corresponds to grid position 0 for the robot, a speed of
1 corresponds to grid position 1, etc. Since the ball speed is
known at the beginning of an episode in simulation, the reward
is given to the agent at each iteration as opposed to once per
episode. This allows for the agent to receive constant positive
or negative reward which will converge faster than a reward
once per episode.

C. Q-Learning

The first algorithm is a simple temporal-difference (TD)
learning algorithm called Q-Learning [7]. The algorithm cal-
culates a scalar value, called the Q-Value, which is a measure
of value of taking action a in state s. The agent uses (2)
to calculate the Q-Values for each possible state-action pair
during training. st is the current state at time t, at is the current
action taken at time t, st+1 is the new state of the agent, and
rt is the reward for taking the action.

Q(st, at) = Q(st, at)+α∗(rt + γmax (Q(st+1))−Q(st, at))
(2)

The learning rate α was set to 0.5. γ is a hyperparameter
which controls how much the agent takes into consideration of
the future Q-Value at time st and is explained more in section
E.

All Q-Values are stored in a Q-Table, with rows representing
states and columns representing the Q-Value for every action
in that state. When the agent needs to select an action, the
Q-Table is referenced to determine which action results in the
highest Q-Value in the current state.

D. Deep Q-Network

The second algorithm is a combination of deep learning
and reinforcement learning, titled Deep Q-Network (DQN)
[1], [2]. DQN uses a neural network as an approximator of
the Q-Values instead of referencing a table in Q-Learning.
Each iteration during training, the agent collects experiences,
or combinations of states, actions, and rewards, and saves them
as replay memory. Once enough experiences are collected,
the network is trained by selecting random experiences from
replay memory. The agent predicts the Q-Value for the current



state, then predicts a target Q-Value for the next state. The
weights of the network are updated using (3)

∆w = α∗[(rt + γ ∗Q (st+1, at, w))−Q (st, at, w)]∇wQ (st, at, w)
(3)

where w is the weights of the neural network, st is the current
state at time t, at is the current action taken at time t, st+1

is the new state of the agent, and rt is the reward for taking
the action. γ is once again discussed in section E.

The network is optimized by taking the mean squared error
between the predicted Q-Values and the target Q-Values.

The network architecture used for the DQN algorithm is
derived from [8] with three hidden layers and takes a vector
of < xr, yr, xb, sb > as the input. The output is the Q-Value
for every action. For each hidden layer, the number of nodes
is set to 20, 18, and 10, respectively. The learning rate is set
to 0.001 [8].

E. Common Hyperparameters

The agents choose an action with a decaying ε-greedy
strategy, ε meaning percent of the time the agent picks a
random action, and 1-ε percent of the time the agent picks
the action with the highest Q-Value for the current state. This
strategy is to encourage the agent to explore the environment
at the beginning of training where not a lot of information
is known, then slowly lower the exploration rate as it learns.
The value of starts at 1 and decays exponentially by an ε-
decay rate of 0.995 after every training step until it reaches an
ε-min of 0.01. The parameters of initial ε, ε-min, and ε-decay
were chosen to match the DeepMind Atari research [3]. The
discount rate γ is the rate at which the agent considers the
predicted future reward when calculating the Q-Value. Based
on the way the reward function is setup, the discount rate is set
to 0.0 because the agent will always receive a positive reward
if it moves closer to the landing location. Thus, the goal for
the agent is to always perform actions so that it immediately
moves closer to the landing location.

IV. RESULTS

The simulation results were collected by running 40,000
simulated ball rolls at various levels of state-spaces. 5x5
represents 5 x grid spaces and 5 y grid spaces, and so on.
Every 100 ball rolls, the average accuracy was calculated
as the total number of catches over 100. The agent should
have a relatively low accuracy to start, and gradually increase
in catch percentage as it trains. Ideally, the agent would
converge to a 100 catch percentage. The vertical lines represent
the point of convergence, or the point at which the average
number of catches plateaus. The number above the vertical line
represents roughly how many ball rolls it took to converge. The
dashed vertical line is the convergence point for Q-Learning
while the dotted vertical line is the convergence point for
DQN. Fig. 2 shows the comparison of both algorithms in
a small state space, where the initial four features to the
simulation can range from 1-5 (top) and 1-10 (bottom). Both

Fig. 2. Average Catches in a 5x5 (above) and 10x10 (below) state-action
space. Q-Learning is dashed line and DQN is dotted line. Q-Learning
outperforms DQN in these smaller state spaces.

algorithms perform well in both state spaces, but the Q-
Learning agent converges more quickly. In the 5x5 state space,
Q-Learning convergences after 400 ball rolls, while DQN
converges after 3,000 ball rolls. In the 10x10 state space, Q-
Learning converges after 1,000 ball rolls and DQN converges
after 7,000 ball rolls. Q-Learning converges more quickly in
the smaller state spaces because the size of the Q-Table is
relatively small which requires fewer ball rolls to determine
the optimal actions.

In larger state spaces shown in Fig. 3, the size of the Q-Table
expands, requiring more iterations to determine the optimal
actions. In each situation both algorithms still converge, but
DQN converges more quickly than Q-Learning. In the 15x15
and 20x20 state space, DQN converges as 5,000 iterations, and
in the 25x25 state space converges at 7,000 rolls. Q-Learning
converges at 6,000, 12,000, and 25,000 ball rolls for 15x15,
20x20, and 25x25 state sizes. Fig. 4 shows an even larger
state space, where each of the four input features can range
between 1 and 35. The DQN algorithm converges at 15,000
ball rolls while the Q-Learning algorithm does not converge in
the 40,000 ball rolls. At an even larger state space, Q-Learning
needs even more ball rolls to determine optimal actions.

These results prove that Q-Learning is not as scalable as
the DQN algorithm. As the state size increases, the size of the
Q-Table increases as well, which requires more simulations
to converge. DQN does not need to be trained in as many



Fig. 3. Average Catches in a 15x15 (top), 20x20 (middle), and 25x25 (bottom)
state-action space. Q-Learning is dashed line and DQN is dotted line. DQN
begins to outperform Q-Learning.

episodes as Q-Learning since a neural network is approximat-
ing the Q-Values that guide the actions. In a situation where
we are discretizing the environment, the goal is to gradually
increase the state and action spaces as close to continuous as
possible. The DQN algorithm proves to be a better choice for
this situation.

V. CONCLUSION

Overall, this project demonstrated a successful method to
predict the landing location of a projectile using reinforcement
learning. We showed that environment discretization can en-
able simple physical tasks to become solvable with RL. In very
limited state spaces, Q-Learning outperforms DQN. However,

Fig. 4. Average Catches in a 30x30 state-action space. Q-Learning is dashed
line and DQN is dotted line. DQN greatly outperforms Q-Learning, while
Q-Learning does not converge in the simulated number of ball rolls.

Fig. 5. Real world implementation of the environment. The ramp is made
out of plywood and the robot is a 2D gantry robot controlled by an Arduino.

with an increased number of state spaces, DQN outperforms
Q-Learning and converges more quickly.

VI. FUTURE WORK

The simulation provides reassurance that an agent could
learn the optimal actions to take in order to catch a projectile
in a discretized environment. Seen in Fig. 5, initial work has
been done to transition the simulated agent into the real world.
A camera is used to detect the location of the ball rolling down
the ramp, and a photo-gate is used to measure the speed of the
ball. The robot's grid position is calculated as a function of
it's motor values. The real world environment has not yet been
tested thoroughly enough to provide statistically significant
results.

Future work may done to improve the baseline RL al-
gorithms as well. The current algorithms predict one action
based on one given state. In the future, it may be beneficial to
input a sequence of states to the algorithms. Ideally, the vector
representation of the state could be replaced with a sequence
of images. A list of improvements DQN algorithm [9], [10]
have recently been published and may benefit the performance
of the algorithm.

VII. ACKNOWLEDGEMENTS

We would like to thank our advisor, Professor Aaron
Carpenter, as well as Professors Memo Ergezer and Nate



Derbinsky for guidance throughout the project.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[3] W. D. Smart and L. Kaelbling, “Practical reinforcement learning in
continuous space,” in Proceeding of the Seventeenth International Con-
ference on Machine Leaning (ICML 2000), 2000, pp. 903–910.

[4] W. T. Uther and M. M. Veloso, “Tree based discretization for contin-
uous state space reinforcement learning,” in American Association for
Artificial Intelligence, 1998.

[5] J. Kober, M. Glisson, and M. Mistry, “Playing catch and juggling with a
humanoid robot,” in Humanoid Robots (Humanoids), 2012 12th IEEE-
RAS International Conference on. IEEE, 2012, pp. 875–881.

[6] R. Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger, and
J. Peters, “Trajectory planning for optimal robot catching in real-
time,” in Robotics and Automation (ICRA), 2011 IEEE International
Conference on. IEEE, 2011, pp. 3719–3726.

[7] R. S. Sutton, A. G. Barto et al., Reinforcement learning: An introduction.
MIT press, 1998.

[8] K. Kim. (2017) Deep q-learning with keras and gym. [Online].
Available: https://keon.io/deep-q-learning/

[9] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[10] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International Conference on Machine Learning, 2016, pp. 1995–2003.


